В частности, в этот архив сначала попали результаты анализов образцов кварцитового саркофага, на обломки которого мы наткнулись прямо в пустыне возле пирамиды фараона XII династии Сехемхета II в Дашуре (см. Рис. 173). Обломки явно не представляли никакого интереса для египтологов, постоянно имеющих дело с целыми саркофагами, так что они их просто оставили там, где нашли. А нам сразу бросились в глаза трехгранные внутренние углы, выполненные в твердом кварците с безукоризненной точностью. На наших камнеобрабатывающих комбинатах изготовить такие углы не могут – после всего имеющегося оборудования в углу остались бы весьма заметные закругления. А здесь – как будто дополнительно поработал ювелир с очень маленьким сверлом, сняв материал так, что никаких закруглений не осталось.

Специалисты по лазерной технике сказали нам, что подобное в принципе можно было бы сделать лазером. Хотя для этого, по энергетике, потребовалось бы оборудование, занимающее по размерам комнату внушительных размеров. Но любой лазер должен был бы оставить после себя следы оплавления, заметные хотя бы на микроуровне. Однако осмотр образцов под микроскопом не выявил никаких признаков оплавления. Форма же кристаллов кварца определенно указывает на то, что здесь применялась механическая обработка каким-то твердым инструментом, двигавшемся на большой скорости.

Анализ микровкраплений на поверхности саркофага показал, что медь в них не была чистой, а содержала в виде примесей мышьяк, железо, никель и олово. При этом попадались и частицы сплава железа с титаном…

Металлы – дар небесных богов
Рис. 174. Микрочастицы инструмента на поверхности кварцитового саркофага

Поверхность декоративной прорези на гранитных воротах в Карнаке (см. Рис. 116), как оказалось, содержит много частиц, в состав которых входит железо, медь, никель и олово (порядок металлов указан в соответствии с уменьшением примерного содержания элементов в микровкраплениях). Попадаются также частицы железо-титан-марганец-кремний.

Геолог Юлия Горлова, проводившая лабораторные исследования образцов, высказала предположение, что основной материал инструмента состоял из медьсодержащего сплава, но при этом использовался твердый абразив (Fe-Ti-Mn). Подобный подход практикуется в современных инструментах, когда твердый абразив наносится на более мягкую металлическую связку, которая обычно изготавливается из сплавов на основе меди, олова, железа, алюминия и других металлов. Но это пока так остается на уровне предположения, поскольку при использовавшихся в анализе методах электронной микроскопии невозможно сделать более однозначные выводы…

Весьма любопытные результаты дали анализы образцов с мегалита под названием Масуда-Ивафун, находящегося в парке Асука в Японии. Это – странная асимметричная «ванна» весом около 800 тонн, издали похожая на потерянный или брошенный какими-то гигантами валун серого гранита (см. Рис. 175). Его габариты по направлению восток–запад – около 11 метров; по направлению север–юг – около 8 метров; высота – около 5 метров. Историки датируют его довольно поздним временем – чуть более тысячи лет назад, но делают это безо всяких на то оснований. Абсолютно никаких упоминаний о времени его изготовлении ни в каких источниках нет.

Здесь обнаружены не только частицы железа с примесями титана и ванадия, но и частица сплава медь-железо-никель-кобальт. Подчеркну, что речь идет именно о сплаве, содержащем указанные элементы, а не просто о какой-то частице, которая могла бы оказаться лишь механической смесью указанных элементов. И если частицу железа с примесями титана и ванадия еще можно было бы списать на материал обычного железного инструмента, который уже использовался в Японии в I тысячелетии нашей эры, то сплав медь-железо-никель-кобальт заведомо не имеет никакого отношения к японскому обществу того времени и указывает на очень высоко развитые технологии.

Особо показательно наличие в сплаве кобальта, поскольку ныне около 80% добычи этого металла расходуется на создание сверхтвердых, жаропрочных, инструментальных и износостойких сплавов. Эти сплавы находят применение в машиностроении, в авиационной технике, ракетостроении, электротехнической и атомной промышленности.

Металлы – дар небесных богов
Рис. 175. Масуда-Ивафун

К сожалению, очень малый размер микровкраплений позволяет получать пока лишь качественный результат. Но мы не теряем надежды подобрать методику, с помощью которой можно было бы определить и количественный состав частиц подобного размера. Тогда можно было бы попробовать воспроизвести соответствующие сплавы и исследовать их свойства. Однако пока это лишь планы на будущее…

Доступное богам недоступно людям

В одной из интернетных статей о различных странных находках, связанных с древней добычей металлов, сообщается, что в 1940 году геологическая экспедиция под руководством Николая Порфирьевича Ермакова обнаружила в труднодоступных отрогах Памира горизонтальный штрек с разветвлениями длиной около 150 метров.

«О его местонахождении геологам сообщили местные жители. В древней выработке добывали минерал шеелит – руду вольфрама. По длине сталагмитов и сталактитов, которые образовались в штреке, геологи установили приблизительное время горной выработки – 12-15 тысяч лет до нашей эры. Кому понадобился в каменном веке этот тугоплавкий металл с температурой плавления 3380°C, неизвестно».

Металлы – дар небесных богов
Рис. 176. Шеелит

Шеелит – минерал вольфрамата кальция CaWO4. Это не только источник вольфрама. Он используется и в ювелирном деле, а кристаллы шеелита ценятся коллекционерами. И конечно, этот минерал мог привлечь внимание первобытного человека, который пустил бы его на украшения. Но ради только материала для украшений пробивать штрек в 150 метров (да еще и в труднодоступном горном районе) он явно бы не стал. Это выходит за все пределы разумной логики. Так что приходится принять мысль о добыче шеелита именно в качестве источника вольфрама.

Правда, температура плавления вольфрама тут не причем, поскольку ради получения этого металла из руды никто шеелит до таких температур не нагревает. Современный процесс извлечения вольфрама из шеелита гораздо сложнее простой плавки руды и состоит из нескольких стадий.

На первом этапе шеелитовую руду обогащают флотацией в жирных кислотах. Флотация – один из основных методов обогащения полезных ископаемых, который основан на различии степени смачиваемости частиц породы в разных жидкостях. При этом шеелит считается труднообогатимым минералом.

Полученный таким образом концентрат разлагают в автоклавах раствором соды при 180-200°С (получают технический раствор вольфрамата натрия) или соляной кислотой (получают техническую вольфрамовую кислоту). Затем раствор высушивается (иногда предварительно производится дополнительное растворение в аммиаке), а получившиеся соли прокаливают. В итоге всех этих процедур получается триоксид вольфрама WO3.

Для получения чистого вольфрама его триоксид WO3 восстанавливают до металлического порошка в водородной атмосфере при температуре около 700°C. Далее настает черед методов порошковой металлургии.

Полученный порошок вольфрама прессуют высоким давлением, а затем спекают в атмосфере водорода при температуре 1200-1300°C. После этого в специальных аппаратах пропускают через спрессованный порошок электрический ток. Металл нагревается до 3000°C, при этом происходит его спекание в монолитный материал. Для последующей очистки и получения монокристаллической формы используется зонная плавка.

Металлы – дар небесных богов
Рис. 177. Металлический вольфрам

Трудно себе представить, что всю эту процедуру каким-то образом мог проделать человек каменного или даже бронзового века. Да и что бы он потом делал с металлическим вольфрамом?..

Лампочки с вольфрамовыми нитями ему точно были ни к чему – электричества еще не было. Да и другие области современного применения этого металла никак не пересекаются с интересами древнего человека.

Из сплавов, содержащих вольфрам или его карбиды, изготовляют танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей. Сплав вольфрама, никеля и меди служит для изготовления контейнеров, в которых хранят радиоактивные вещества, поскольку его защитное действие на 40% выше, чем у свинца. Вольфрам – непременная составная часть лучших марок инструментальной стали. В целом ныне почти 95% всего добываемого вольфрама поглощает именно производство подобных сплавов.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Скляров Андрей Юрьевич

Скляров Андрей

Писатель, исследователь, путешественник.
Основатель и лидер проектов "Лаборатория альтернативной истории" и "Запретные темы истории". Подробная информация

Все работы

Добавить комментарий

Такой e-mail уже зарегистрирован. Воспользуйтесь формой входа или введите другой.

Вы ввели некорректные логин или пароль

Извините, для комментирования необходимо войти.
1
Исследователь

Тиуанако никак не может иметь возраст 15 тыс лет. Почему? Да потому что Тиуанако построен уже на высохших селевых наносах, что принесла цунами от упавшего у Филиппин астероида (Великого Потопа). Потому Тиунако может иметь верхний край в 8-9 тыс лет (сколько надо времени что б селевые массы высохли и стали твердыми?) А война Богов была в 3,5-4-5 тысячелетиях до н. э. (список Манефона о правителях додинастического периода). Вот и выходит, что Тиуанако был построен между 6-7 тыс и 9 тыс лет назад.

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: