Главная страница » Статьи » Методы исследований » Чего изволите-с?.. Меню радиоуглеродного датирования и дендрохронологии

Теория метода радиоуглеродного датирования

Одним из основных химических элементов круговорота веществ в биосфере Земли является углерод, который встречается в виде трех изотопов: 12С, 13С, 14С. В атмосфере углерод присутствует в основном в виде углекислого газа. Есть и другие соединения, но их уровень незначителен по сравнению с СО2. Львиная доля углерода приходится на изотоп 12С. На изотоп 13С приходится примерно 0,1%, а доля 14С – 1,18.10-12.

Интересующий нас далее изотоп 14С образуется в верхних слоях атмосферы из азота воздуха под воздействием космических лучей по реакции:

14N + n ® 14C + p+

Из атмосферного воздуха изотоп 14С в процессе обмена веществ попадает в биосферу Земли. При этом основным каналом поступления 14С в живые организмы является фотосинтез растений, а далее – по пищевой цепочке – он попадает в организм животных. Через биосферу и непосредственно из атмосферы (хотя и менее интенсивно) 14С попадает в почву и воду океанов.

Если изотопы 12С и 13С являются устойчивыми, то 14С радиоактивен и с течением времени распадается по реакции:

14С ® 14N + e + n

Данная реакция (как и другие реакции радиоактивного распада) характеризуется зависимостью:

А/А0 = 2 -t/T

где А0 – концентрация 14С в некотором образце в начальный момент времени; А – концентрация 14С в момент времени t; Т – период полураспада, равный для радиоуглерода величине 5730±40 лет.

Именно это свойство нестабильности и “склонности” к распаду и используется в радиоуглеродных методах исследования, которые можно разделить на задачи двух видов (это деление нам понадобится в дальнейшем).

Первый вид – прямая задача.

Если известно время t, т.е. если известен возраст образца, то по текущему содержанию 14С (и вышеприведенной зависимости) можно определить содержание радиоуглерода в образце в начальный момент времени, т.е. во время t назад.

Взаимосвязь содержания радиоуглерода в биосфере и атмосфере Земли позволяет далее определять содержание 14С в атмосфере планеты в прошлом, а через него и изменения различных факторов, влияющих на процесс образования 14С (магнитного поля Земли, солнечной активности, мощности потока космических лучей и т.д. и т.п.).

Но, несмотря на всю увлекательность данного направления исследований, мы на них здесь не будем останавливаться, поскольку нас будет интересовать другой вид задачи.

Второй вид – обратная задача.

Если известно начальное содержание 14С в образце, то, измерив его содержание в текущий момент времени, по той же вышеприведенной зависимости можно определить возраст образца. И здесь открываются привлекательные перспективы для археологов и историков.

В силу важности соответствующих задач Либби, первым применивший радиоуглеродный метод к датированию образцов еще 60 лет назад, был даже удостоен Нобелевской премии…

Но, как говорится: гладко было на бумаге, да забыли про овраги…

Теория – это одно, а практика – совершенно другое. И вслед за первыми успехами метода радиоуглеродного датирования последовали и его неудачи. Начали обнаруживаться серьезные расхождения между известным возрастом (определенным другими методами) образцов и радиоуглеродным возрастом этих же образцов; радиоуглеродные измерения давали противоречивые результаты и т.д. и т.п. Все это заставило исследователей всерьез потрудиться над усовершенствованием самой методики радиоуглеродного датирования.

Дело в том, что для возможности определения возраста образца, необходимо выполнить целый ряд требований.

Во-первых, должна быть сведена к минимуму ошибка в определении текущей концентрации 14С в исследуемом образце.

Во-вторых, необходимо знать начальную концентрацию 14С в образце.

И в-третьих, нужно быть уверенным, что за период, прошедший с начального момента времени, с образцом не происходило процессов, которые могли бы привести к изменению содержания 14С в образце, помимо процесса радиоактивного распада. Либо быть уверенным, что существующие методы учета влияния таких процессов в достаточной степени корректны.

Проще всего оказалось решить первую задачу. В настоящее время масс-спектрометрические методы позволяют определять содержание 14С в очень малых образцах (достаточно лишь 10 микрограмм углерода) с высокой степенью точности. Помимо этого успешно применяются методы очистки образцов и углеродного обогащения. Для минимизации шибок в этих методах используются измерения на контрольных образцах, которые позволяют корректно учесть возможные изменения концентрации 14С в образцах в процессе соответствующих лабораторных процедур.

Несколько сложнее дело обстояло с третьей задачей (чуть нарушим порядок), т.е. с задачей учета предыстории образца. Дело в том, что метод радиоуглеродного датирования базируется на предположении, согласно которому смерть живого организма (растения, животного, человека) означает его выход из активного процесса обмена веществ, в процессе которого непрерывно пополняется его “запас” 14С. Но ведь на самом деле процесс обмена веществ со смертью организма не прекращается: бренные останки в той или иной степени подвержены влиянию со стороны внешней среды. – а следовательно, возможно и нарушение соотношения между содержанием разных изотопов углерода в этих бренных останках.

Здесь был найден “обходной вариант”: задействован метод выделения специфичного для образца соединения (белки, аминокислоты, целлюлоза, хитин и т.п.), минимально подверженного внешним воздействиям в процессе разложения бренных останков…

Необходимость же знания начальной концентрации 14С послужила мощным стимулом к решению прямой задачи радиоуглеродного метода (собственно, это самое определение начального 14С и является прямой задачей метода). И здесь роль “палочки-выручалочки” выпала на дендрохронологию, – метод, основанный на исследовании колец деревьев (его мы рассмотрим в другой части статьи).

Было обнаружено, что изотопное соотношение 14С/12С в растениях довольно точно соответствует этому отношению в атмосфере. В частности, внешнее кольцо деревьев как бы “фотографирует” содержание радиоуглерода в атмосфере в год образования этого кольца. А поскольку уже были выстроены довольно длинные дендрошкалы, радиоуглеродное исследование колец деревьев позволило восстановить картину изменений содержания 14С в атмосфере Земли в прошлом (см. рис.1).

Рис. 1

Примечание:

Честно говоря, в справедливости данного утверждения у меня остались серьезные сомнения… Дело в том, что трудно представить реальное живое дерево, ствол которого представляет собой набор абсолютно изолированных друг от друга цилиндрических годовых слоев. Более того, ведь и внутренние слои продолжают жить, участвуя в процессе обмена веществ в дереве. В частности, по внутренним слоям ежегодно прокачиваются “соки” (жидкая фаза) растения. По всем логическим соображениям, это должно было бы влиять на содержание радиоуглерода даже в твердой составляющей древесины: снизу, из почвы, поступает раствор, обедненный 14С; а от листьев – обогащенный свежим 14С, поглощенным из атмосферы уже не в год образования кольца, а позже. И строго говоря, для корректного определения концентрации радиоуглерода именно в год формирования кольца необходимо знать баланс этих потоков.

К сожалению, в многочисленных доступных источниках (а мне пришлось в поисках различных данных “прочесать” более тысячи сайтов на различных языках) данный вопрос, если и затрагивается, то обсуждается лишь “на пальцах” без подкрепления какими-либо эмпирическими данными. А ведь общий вид приведенной на рис.1. кривой, с возрастанием концентрации радиоуглерода при удалении вглубь времени, вполне может иметь и иное объяснение, нежели изменение содержания 14С в самой атмосфере: если в результате баланса упомянутых потоков внутренние слои все-таки получают свежий радиоуглерод, то он, естественно, будет повышать общую концентрацию 14С в них, “омолаживая” их и создавая иллюзию более высокого содержания радиоуглерода в прошлом. Заметим, что, исходя из общего вида приведенной кривой, процесс притока свежего радиоуглерода может быть очень и очень малым – всего порядка 1-2 процентов от имеющегося в слое за целую тысячу лет!.. Ясно, что эмпирически “выловить” такой поток чрезвычайно сложно…

Но, увы, я также вынужден лишь “рассуждать на пальцах”… Поэтому в данном случае остается только принять точку зрения об абсолютной изолированности внутренних слоев от атмосферного радиоуглерода в качестве рабочей гипотезы и двинуться далее…

На основании данных об изменении во времени содержания 14С в атмосфере для практических целей сформированы т.н. калибровочные (поправочные) кривые, позволяющие переводить возраст образцов, определенный радиоуглеродным методом (радиоуглеродный возраст), в действительный возраст (см. рис. 2).

Рис. 2

(Попутно заметим, что за время применения радиоуглеродного метода было уточнено и значение периода полураспада 14С. Поскольку уже традиционно в лабораториях применяют значение 5568 лет, использованное Либби, то во избежание путаницы соответствующая поправка просто внесена в калибровочную кривую.)

Таким образом, в нынешней практике исследователь: тщательно очищает образец; выделяет из него специфическую (наиболее устойчивую по 14С) фракцию; измеряет содержание в ней 14С (в сравнении с 12С); корректирует данное значение 14С на поправочный коэффициент, учитывающий (по контрольным образцам) возможные искажения, возникающие в ходе лабораторных процедур; вычисляет радиоуглеродный возраст образца; и, наконец, с помощью калибровочной кривой переводит радиоуглеродный возраст в “истинный”.

(Я опускаю здесь еще одну процедуру – поправку на изотопное фракционирование, анализ которой будет проведен в дальнейшем.)

На этом мы и закончим краткое описание предыстории и современного состояния метода радиоуглеродного датирования, составленное по многочисленной литературе, имеющейся сейчас в печатном и электронном виде. Специалистам вряд ли оно было интересно, поскольку итак им известно, и было необходимо лишь тем, кто имеет весьма смутное представление о методе.

Но теперь мы можем перейти к тому, что предпочитают не афишировать сторонники радиоуглеродного датирования, а именно: к “подводным камням” метода.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Скляров Андрей Юрьевич

Андрей Скляров

Писатель, исследователь, путешественник.
Основатель и лидер проектов "Лаборатория альтернативной истории" и "Запретные темы истории". Подробная информация

Все работы

Добавить комментарий

Такой e-mail уже зарегистрирован. Воспользуйтесь формой входа или введите другой.

Вы ввели некорректные логин или пароль

Sorry that something went wrong, repeat again!

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: